Practical information

- 15 minutes breaks between sessions
- Remember to mute when listening
- Use chat actively during sessions
- Use "raise hand" functionality during discussions or to indicate wish to ask questions
- No recording of sessions are planned
- Working groups are organised using the breakout session functionality in Zoom
 - Participants are allocated to sessions by host
- Supposed to be an interactive course!
- Picture of all participants wanted, will start with this

Motivation: Why do we need data management?

Øystein Godøy

Outline

- Data Sharing and Management Snafu in 3 Short Acts
 - https://www.youtube.com/watch?v=N2zK3sAtr-4
- Why do we need data management?
- Science life cycle/Data life cycle
- How to change data sharing culture.
- What are the FAIR data principles?
 - How do they help with good data management?
- External boundary conditions by funding agencies and publishers.
- Scientific data as service.
- Data management plan.

Data Sharing and Management Snafu in 3 Short Acts

https://www.youtube.com/watch?v=N2zK3sAtr-4

NorDataNet

Why do we need data management?

- Loosing scientific data
 - Decline can mean 80% of data are unavailable after 20 years.
 - Gibney and Van Noorden (2013), Nature

MISSING DATA

As research articles age, the odds of their raw data being extant drop dramatically.

Why bother with structured data management?

Benefits

- Maximise public investment in data collection and production
- Promote scientific collaboration
- Promote interdisciplinary science
- Promote scientific transparency
- Leave a legacy
- Science paradigms
 - according to Jim Gray
 - empirical science
 - theoretical science
 - computational science
 - data exploration science

Why share data?

- Research sponsor require it
 - recognition as an authoritative source and wise investment
- Quality control
 - improved data quality due to expanded use, field checks, and feedback
- Improved visibility
 - improved connections to scientific network, peers, and potential collaborators
- Journals require it
 - Reproducible research
- Far upstream sponsors require it

CC image by SLU Madrid Campu on Flickr

Making Your Research Easier and Cheaper

The 5 P's matter!

Prior

Planning

Prevents

Poor

Performance!

Science life cycle/Data life cycle

https://codemeta.github.io/

Challenge to scientists: does your ten-year-old code still run?

https://www.nature.com/articles/d41586-020-02462-7

DIKW chain

- How to transition from data to knowledge and understanding...
 - The illustration is a common redrawing of Russ Ackoff "From Data to Wisdom"
 - Journal of Applied Systems Analysis, Volume 16, 1989 p 3-9
- DIKW is necessary to
 - Take care of data for the future
 - Ensure data is the basis for knowledge
 - Now and in the future
 - Knowledge based management depends on national, regional and global interaction

http://www.easterbrook.ca/steve/2012/09/what-is-climate-informatics/

DIKW chain

The reality today

How to change data sharing culture?

Bridging between data management actors

Unwilling

- Do not want to change behaviour, existing tools have worked well.
- · Want to continue as before.
- Does not see the benefit of standardisation, until explicitly explained/demonstrated or through new

Willing

- · Wants to translate between provider and consumer.
- Still relies on some sort of standardisation in order to be cost effective.
- Must know dimensions, structures, content, missing values, units, aggregation levels, ...

Unwilling and skeptical to potential users

- Do not want to change behaviour, legacy system(s).
- Want to continue as before.
- Understands own requirements (knows the data well).

- A prerequisite for efficient data sharing across communities is application of proper metadata and standards
- Although standards exist, they are often not used by data providers who doesn't see the benefit
- Lacking understanding for the importance of use metadata
 - Enabling reuse across communities and generations
 - Lacking understanding for the importance of semantic standardisation
- Need a business model crediting all involved parties
 - Scientists, institutions, data centres,
- It is about leaving a legacy

The FAIR Guiding Principles for scientific data management and stewardship

To be Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available

• To be **Interoperable**:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation
- I2. (meta)data use vocabularies that follow FAIR principles
- 13. (meta)data include qualified references to other (meta)data

To be Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards

Scientific data as service

- From science to service
 - Goddard, Science 23
 Sep 2016: Vol. 353,
 Issue 6306, pp. 13661367 DOI:
 10.1126/science.aag308

Data management plans

A data management plan (DMP) is a written document that describes the data you expect to acquire or generate during the course of a research project, how you will manage, describe, analyze, and store those data, and what mechanisms you will use at the end of your project to share and preserve your data.

Data management plans

- Are increasingly being required by funding agencies
 - e.g. RCN, EU
- And by e-infrastructure providers
 - e.g. Sigma2

